Quasiconformal homogeneity of hyperbolic manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mazurkiewicz Manifolds and Homogeneity

It is proved that no region of a homogeneous locally compact, locally connected metric space can be cut by an Fσ-subset of a “smaller” dimension. The result applies to different finite or infinite topological dimensions of metrizable spaces. The classical Hurewicz-Menger-Tumarkin theorem in dimension theory says that connected topological n-manifolds (with or without boundary) are Cantor manifo...

متن کامل

Quasiconformal Harmonic Maps into Negatively Curved Manifolds

Let F : M → N be a harmonic map between complete Riemannian manifolds. Assume that N is simply connected with sectional curvature bounded between two negative constants. If F is a quasiconformal harmonic diffeomorphism, then M supports an infinite dimensional space of bounded harmonic functions. On the other hand, if M supports no non-constant bounded harmonic functions, then any harmonic map o...

متن کامل

A lower bound for Torelli-K-quasiconformal homogeneity

A closed hyperbolic Riemann surfaceM is said to beK-quasiconformally homogeneous if there exists a transitive family F of K-quasiconformal homeomorphisms. Further, if all [f ] ⊂ F act trivially on H1(M ;Z), we say M is Torelli-K-quasiconformally homogeneous. We prove the existence of a uniform lower bound on K for Torelli-K-quasiconformally homogeneous Riemann surfaces. This is a special case o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2004

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-004-0582-6